Question	Scheme	Marks	AOs
1 (a)	Systematic (sample)	B1cao	1.2
(b)	In LDS some days have gaps because the data was not recorded	B1	2.4
(c)	$\begin{bmatrix} \overline{t} = \frac{374}{20} = 18.7 \end{bmatrix}$ $\sigma_t = \sqrt{\frac{7600}{20} - \overline{t}^2} [=\sqrt{30.31}]$	M1	1.1a
	= 5.5054 awrt <u>5.51</u> (Accept use of $s_t = \sqrt{\frac{7600 - 20\overline{t}^2}{19}} = 5.6484)$	A1	1.1b
		(4	4 marks)
Part	Notes		
(b)	B1 a correct explanation		
(c)	M1 for a correct expression for \overline{t} and σ_t or s_t . Ft an incorrect	ect evaluat	ion of \overline{t}
	A1 for $\sigma_t = \text{awrt } 5.51 \text{ or } s_t = \text{awrt } 5.65$		

Question	Scheme	Marks	AOs
2	$17 + 45 + \frac{1}{3} \times 9$ [= 65]	M1	2.2a
	(7-8) <u>14</u> <u>or</u> $(16-20)$ <u>5</u>	M1	3.1a
	[Values may be seen in the table]	A1	1.1b
	Percentage of motorists is $\frac{"65"}{6+"14"+17+45+9+"5"} \times 100$	M1	3.1b
	= <u>67.7%</u>	A1	1.1b
		(!	5 marks)
Part	Notes		
	1 st M1 for a fully correct expression for the number of motorists i	n the interv	val
	2^{nd} M1 for clear use of frequency density in (4-6) or (13-15) cases	s to establi	sh the fd
	scale. Then use of area to find frequency in one of the mis	sing cases.	
	1 st A1 for both correct values seen		
	3 rd M1 for realising that total is required and attempting a correct	expression	n for %
	2^{nd} A1 for awrt 67.7%		

Question	Scheme	Marks	AOs
3 (a)	p = [1 - 0.75 - 0.05 =] 0.20	B1	1.1b
		(1)	
(b)	<i>q</i> = <u>0.15</u>	B1ft	1.1b
	P(A) = 0.35 $P(T) = 0.6$ $P(A and T) = 0.20P(A) \times P(T) = 0.21$	M1	2.1
	Since $0.20 \neq 0.21$ therefore <i>A</i> and <i>T</i> are not independent	A1	2.4
		(3)	
(c)		B1	1.1b
	P(not [A or C]) = 0.45	(1)	
	1	(:	5 marks)
Part	Notes		
(a)	B1cao for $p = 0.20$		
(b)	B1ft for use of their p and P(A or T) to find q i.e. $0.75 - p^{"} - 0.44$		
	M1 for the statement of all probabilities required for a suitable to	est and sigl	nt of
	any appropriate calculations required.		
(c)	A1 All probabilities correct, correct comparison and suitable cor	nment.	
	B1cao for 0.45		

Question	Scheme	Marks	AOs
4 (a)	IQR = 2.3 and $20.6 \gg 2.4 + 1.5 \times 2.3$ (= 5.85) (Compare correct values)	B1	1.1b
		(1)	
(b)(i)	e.g. it is a piece of data and we should consider all the data (o.e.)	B1	2.4
(ii)	e.g. it is an extreme value and could unduly influence the analysis	B1	2.4
	or it could be a mistake		
		(2)	
(c)	e.g. "as humidity increases rainfall increases"	B1	2.2b
		(1)	
(d)	e.g. a 10% increase in humidity gives rise to a 1.5 mm increase in rainfall or represents 0.15mm of rainfall per percentage of humidity	B1	3.4
		(1)	
(e)(i)	Not a good method since only uses 11 days from one location in one month.	B1	2.4
(ii)	e.g. She should use data from more of the UK locations and more of the months or using a spreadsheet or computer package she could use all of the available UK data	B1	2.4
		(2)	
		(7 ma	arks)
Part	Notes		
(a)	B1 for sight of the correct calculation and suitable comparison w	with 20.6	
	B1 for a suitable reason for including the data point		
(ii) (c)	 B1 for a suitable reason for excluding the data point B1 for a suitable interpretation of positive correlation mentionin rainfall 	ng humidit	y and
(d)	B1 for a suitable description of the rate: rainfall per percentage of including reference to values.	of humidit	у
(e)(i)	B1 for a comment that supports the idea that her sampling metho one	od was not	a good
(ii)			
	only UK locations are required.		

Question	Scheme	Marks	AOs
5(a)	$P(X \ge 16) = 1 - P(X \le 15)$	M1	1.1b
	= 1 - 0.949077 = awrt 0.0509	A1	1.1b
		(2)	
(b)	$H_0: p = 0.3$ $H_1: p \neq 0.3$ (Both correct in terms of p or π)	B1	2.5
		(1)	
(c)	$[Y \sim B(20, 0.3)]$ sight of $P(Y \le 2) = 0.0355$ or $P(Y \le 9) = 0.9520$	M1	2.1
	Critical region is $\{Y \leq 2\}$ or (o.e.)	A1	1.1b
	$\{ Y \ge 10 \} $ (o.e.)	A1	1.1b
		(3)	
(d)	[0.0355 + (1 - 0.9520)] = 0.0835 or 8.35%	B1ft	1.1b
		(1)	
(e)	(Assuming that the 20 customers represent a random sample then) 12 is in the CR so the manager's suspicion is supported	B1ft	3.2a
		(1)	
(f)	e.g. (e) requires the 20 customers to be a random sample or independent and the members of the scout group may invalidate this so binomial distribution would not be valid (and conclusion in (e) is probably not valid)	B1	3.5a
		(1)	
		()	9 marks)
Part	Notes		
(a)	M1 for dealing with $P(X \ge 16)$ – they need to use cumulative product of A_1 – over 0.0500 (from coloulator)	b. function	on calc.
(b)	A1 awrt 0.0509 (from calculator) B1 for both hypotheses in terms of p or π and H ₁ must be 2-tail		
(b) (c)	M1 for correct use of tables to find probability associated with c	ritical valu	16
(0)	1^{st} A1 for the correct lower limit of the CR. Do not award for P(Y		
	2^{nd} A1 for the correct upper limit.	< -/	
(d)			ess
(e)	B1ft for a comment that relates 12 to their CR and makes a consist	tent comm	ent
	relating this to the manager's suspicion		
(f)	B1 for a comment that: gives a suitable reason based on lack of ine sample not being random <u>so</u> the binomial model is not valid	dependenc	e <u>or</u> the

Question	Scheme	Marks	AOs
6.	Using distance = total area under graph (e.g. area of rectangle + triangle or trapezium or rectangle – triangle)	M1	2.1
	e.g. $D = UT + \frac{1}{2} Th$, where h is height of triangle	A1	1.1b
	Using gradient = acceleration to substitute $h = aT$	M1	1.1b
	$D = U T + \frac{1}{2} a T^2 *$	A1 *	1.1b
		4	
	1	(4	4 marks)

Notes

 1^{st} M1 for use of distance = total area to give an equation in *D*, *U*, *T* and one other variable 1^{st} A1 for a correct equation

 2^{nd} M1 for using gradient = *a* to eliminate other variable to give an equation in *D*, *U*, *T* and *a* only

2nd A1* for a correct **given answer**

Question	Scheme	Marks	AOs
7(i)(ii)	Using a correct strategy for solving the problem by setting up two equations in <i>a</i> and <i>u</i> only and solving for either	M1	3.1b
	Equation in <i>a</i> and <i>u</i> only	M1	3.1b
	$22 = 2u + \frac{1}{2} a 2^2$	A1	1.1b
	Another equation in <i>a</i> and <i>u</i> only	M1	3.1b
	$126 = 6u + \frac{1}{2} a 6^2$	A1	1.1b
	5 m s ⁻²	A1	1.1b
	6 m s ⁻¹	A1 ft	1.1b
		('	7 marks)

Notes

1st M1 for solving the problem by setting up two equations in a and u only and solving for either 2^{nd} M1 use of (one or more) *suvat* formulae to produce equation in u and a only

1st A1 for a correct equation

 3^{rd} M1 use of (one or more) suvat formulae to produce another equation in u and a only

2nd A1 for a correct equation

3rd A1 for correct accln 5 m s⁻²

 4^{th} A1 for correct speed 6 m s⁻¹ (The second of these A marks is an **ft** mark, following an incorrect value for *u* or *a*, depending on which has been found first)

N.B. Do not award the **ft** mark for absurd answers e.g. a > 15, u > 50

See alternative on next page

ALTERNATIV	E

Question	Scheme	Marks	AOs
7(i)(ii)	Using a correct strategy for solving the problem by obtaining actual speeds at two times and using $a =$ change in speed / time taken.	M1	3.1b
	Actual speed at $t = 1 =$ Average speed over interval	M1	3.1b
	22/2 = 11	A1	1.1b
	Actual speed at $t = 4$ = Average speed over interval	M1	3.1b
	104/4 = 26	A1	1.1b
	5 m s ⁻²	A1	1.1b
	6 m s ⁻¹	A1 ft	1.1b
		('	7 marks)
2^{nd} M1 use 1^{st} A1 for a	Notes olving the problem by obtaining two actual speeds and use of $a =$ of speed at half-time = av speed over interval to produce a speed a correct speed	at $t = 1$	

 3^{rd} M1 use of speed at half-time = av speed over interval to produce a speed at t = 4 2^{rd} A1 for a correct speed 3^{rd} A1 for a correct accln 5 m s⁻² 4^{th} A1 ft for correct speed 6 m s⁻¹ (This is an ft mark, following an incorrect value of *a*)

N.B. Do not award the **ft** mark for absurd answers e.g. a > 15, u > 50

Question	Scheme	Marks	AOs
8 (a)	Substitution of both $t = 0$ and $t = 10$	M1	2.1
	s = 0 for both $t = 0$ and $t = 10$	A1	1.1b
	Explanation ($s > 0$ for $0 < t < 10$) since $s = \frac{1}{10}t^2(t - 10)^2$	A1	2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v = \frac{1}{10} (4t^3 - 60t^2 + 200t)$	A1	1.1b
	Interpretation of 'rest' to give $v = \frac{1}{10}(4t^3 - 60t^2 + 200t) = \frac{2}{5}t(t - 5)(t - 10) = 0$	M1	1.1b
	t = 0, 5, 10	A1	1.1b
	Select $t = 5$ and substitute their $t = 5$ into s	M1	1.1a
	Distance $= 62.5 \text{ m}$	A1 ft	1.1b
		(6)	
		(9 marks)
	Notes		
A1 for r A1 Sin (b) 1 st M1 f 1 st A1 fo	substituting $t = 0$ and $t = 10$ into <i>s</i> expression noting that $s = 0$ at both times ce <i>s</i> is a perfect square, $s > 0$ for all other <i>t</i> - values. or differentiating <i>s</i> w.r.t. <i>t</i> to give <i>v</i> (powers of <i>t</i> reducing by 1) or a correct <i>v</i> expression in any form for equating <i>v</i> to 0 and factorising		

 2^{nd} A1 for correct *t* values 3^{rd} A1 for substituting their intermediate *t* value into *s* 3^{rd} A1 **ft** following an incorrect *t*-value.

Question	Scheme	Marks	AOs
9(a) (i)	Equation of motion for A	M1	3.3
(ii)	T - 12.7 = 2.5a	A1	1.1b
	Equation of motion for <i>B</i>	M1	3.3
	1.5g - T = 1.5a	A1	1.1b
		(4)	
(b)	Solving two equations for <i>a</i>	M1	1.1b
	a = 0.5	A1	1.1b
		(2)	
(c)	$1 = \frac{1}{2} 0.5 \ t^2$	M1	3.4
	t = 2 seconds	A1ft	1.1b
		(2)	
(d)	(i) Not very appropriate for valid reason, see below in notes	B1	3.5a
	(ii) Valid improvement in model, see below in notes.	B 1	3.5c
		(2)	
		(2	10 marks)
$1^{st} A$ (ii) $2^{nd} M$ $2^{nd} A$ (b) M1 f solvi A1 fc (c) M1 f equat A1ft (d) (i) B e.g. ff - dc - dc	Notes Al for resolving horizontally for <i>A</i> 1 for a correct equation (1 for resolving vertically for <i>B</i> Al for a correct equation for complete correct strategy for solving the problem, setting up two equating them for <i>a</i> for $a = 0.5$ for a complete method (which could involve use of more than one <i>suvat</i> for tion in <i>t</i> only from their <i>a</i> to get time in seconds 1 for model is inappropriate, with valid reason he ball has taken longer to reach the floor because the model bes not include air resistance bes not include the roughness of the pulley y other appropriate comment		
(ii) B	 B1 for e.g. Do not model ball <i>B</i> as a particle but give its dimensions so di e.g. Do not model pulley as being small so string not parallel to table e.g. Do not model resistance as being constant 	stance it fall	s changes