Paper 2: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1 (a)	Systematic (sample)	B1cao	1.2
(b)	In LDS some days have gaps because the data was not recorded	B1	2.4
(c)	$\begin{aligned} {\left[\bar{t}=\frac{374}{20}=\right.} & 18.7] \\ \sigma_{t} & =\sqrt{\frac{7600}{20}-\bar{t}^{2}} \quad[=\sqrt{30.31}] \end{aligned}$	M1	1.1a
	$=5.5054 \ldots \quad \text { awrt } \mathbf{5 . 5 1}$ (Accept use of $s_{t}=\sqrt{\frac{7600-20 \bar{t}^{2}}{19}}=5.6484 \ldots$)	A1	1.1b
(4 marks)			
Part	Notes		
(b)	B1 a correct explanation		
(c)	M1 for a correct expression for \bar{t} and σ_{t} or s_{t}. Ft an incorrect evaluation of \bar{t}		
	A1 for $\sigma_{t}=$ awrt 5.51 or $s_{t}=$ awrt 5.65		

Question	Scheme	Marks	AOs
2	$17+45+\frac{1}{3} \times 9 \quad[=65]$	M1	2.2a
	$\begin{aligned} & (7-8) \underline{\mathbf{1 4}} \text { or }(16-20) \underline{\mathbf{5}} \\ & \text { [Values may be seen in the table] } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	Percentage of motorists is $\frac{" 65 "}{6+14 "+17+45+9+" 5 "} \times 100$	M1	3.1b
	= $\underline{67.7 \%}$	A1	1.1b
(5 marks)			
Part	Notes		
	$1^{\text {st }} \mathrm{M} 1$ for a fully correct expression for the number of motorists in the interval		
	$2^{\text {nd }}$ M1 for clear use of frequency density in (4-6) or (13-15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases.		
	$1^{\text {st }} \mathrm{A} 1$ for both correct values seen		
	$3{ }^{\text {rd }} \mathrm{M} 1$ for realising that total is required and attempting a correct expression for \%		
	$2^{\text {nd }} \mathrm{A} 1$ for awrt 67.7\%		

Question	Scheme	Marks	AOs
3 (a)	$p=[1-0.75-0.05=] \underline{\mathbf{0 . 2 0}}$	B1	1.1b
		(1)	
(b)	$q=\underline{0.15}$	B1ft	1.1b
	$\mathrm{P}(A) \times \mathrm{P}(T)=0.21$	M1	2.1
	Since $0.20 \neq 0.21$ therefore A and T are not independent	A1	2.4
		(3)	
(c)	$\mathrm{P}(\operatorname{not}[A$ or $C])=\underline{\mathbf{0 . 4 5}}$	B1	1.1b
		(1)	
(5 marks)			
Part	Notes		
(a)	B1cao for $p=0.20$		
	B1ft for use of their p and $\mathrm{P}(A$ or $T)$ to find q i.e. $0.75-$ " p " - 0.40 or $q=0.15$		
	M1 for the statement of all probabilities required for a suitable test and sight of any appropriate calculations required.		
	A1 All probabilities correct, correct comparison and suitable comment.		
(c)	B1cao for 0.45		

Question	Scheme	Marks	AOs
4(a)	$\mathrm{IQR}=2.3$ and $20.6 \gg 2.4+1.5 \times 2.3(=5.85)$ (Compare correct values)	B1	1.1b
		(1)	
(b)(i) (ii)	e.g. it is a piece of data and we should consider all the data (o.e.)	B1	2.4
	e.g. it is an extreme value and could unduly influence the analysis or it could be a mistake	B1	2.4
		(2)	
(c)	e.g. "as humidity increases rainfall increases"	B1	2.2b
		(1)	
(d)	e.g. a 10% increase in humidity gives rise to a 1.5 mm increase in rainfall or represents 0.15 mm of rainfall per percentage of humidity	B1	3.4
		(1)	
$\overline{(e)(i)}$ (ii)	Not a good method since only uses 11 days from one location in one month.	B1	2.4
	e.g. She should use data from more of the UK locations and more of the months or using a spreadsheet or computer package she could use all of the available UK data	B1	2.4
		(2)	
		(7 marks)	
Part	Notes		
(a)	B1 for sight of the correct calculation and suitable comparison with 20.6		
(b)(i)	B1 for a suitable reason for including the data point		
(ii)	B1 for a suitable reason for excluding the data point		
(c)	B1 for a suitable interpretation of positive correlation mentioning humidity and rainfall		
(d)	B1 for a suitable description of the rate: rainfall per percentage of humidity including reference to values.		
(e)(i)	B1 for a comment that supports the idea that her sampling method was not a good one		
(ii)	B1 for some sensible suggestions that would give a better representation of the data across the UK. Must show some awareness of the fact that LDS has different locations and more months of data available but must be clear they are NOT using any overseas locations. NB B0 for a comment that says use more than one location without specifying that only UK locations are required.		

Question	Scheme	Marks	AOs
6.	Using distance $=$ total area under graph (e.g. area of rectangle + triangle or trapezium or rectangle - triangle)	M1	2.1
	e.g. $D=U T+1 / 2 T h$, where h is height of triangle	A1	1.1b
	Using gradient $=$ acceleration to substitute $h=a T$	M1	1.1b
	$D=U T+1 / 2 a T^{2} *$	A1 *	1.1b
		4	
(4 marks)			
Notes			

Question	Scheme	Marks	AOs
7(i)(ii)	Using a correct strategy for solving the problem by setting up two equations in a and u only and solving for either	M1	3.1b
	Equation in a and u only	M1	3.1b
	$22=2 u+\frac{1}{2} a 2^{2}$	A1	1.1b
	Another equation in a and u only	M1	3.1b
	$126=6 u+\frac{1}{2} a 6^{2}$	A1	1.1b
	$5 \mathrm{~m} \mathrm{~s}^{-2}$	A1	1.1b
	$6 \mathrm{~m} \mathrm{~s}^{-1}$	A1 ft	1.1b
(7 marks)			
Notes 1st M1 for solving the problem by setting up two equations in a and u only and solving for either $2^{\text {nd }}$ M1 use of (one or more) suvat formulae to produce equation in u and a only 1st A1 for a correct equation $3^{\text {rd }}$ M1 use of (one or more) suvat formulae to produce another equation in u and a only $2^{\text {nd }} \mathrm{A} 1$ for a correct equation $3^{\text {rd }} \mathrm{A} 1$ for correct accln $5 \mathrm{~m} \mathrm{~s}^{-2}$ $4^{\text {th }} \mathrm{A} 1$ for correct speed $6 \mathrm{~m} \mathrm{~s}^{-1}$ (The second of these A marks is an $\mathbf{f t}$ mark, following an incorrect value for u or a, depending on which has been found first) N.B. Do not award the ft mark for absurd answers e.g. $a>15, u>50$			
See alternative on next page			

ALTERNATIVE

Question	Scheme	Marks	AOs
7(i)(ii)	Using a correct strategy for solving the problem by obtaining actual speeds at two times and using $a=$ change in speed / time taken.	M1	3.1b
	Actual speed at $t=1=$ Average speed over interval	M1	3.1 b
	$22 / 2=11$	A1	1.1b
	Actual speed at $t=4=$ Average speed over interval	M1	3.1b
	104/4 $=26$	A1	1.1b
	$5 \mathrm{~m} \mathrm{~s}^{-2}$	A1	1.1b
	$6 \mathrm{~m} \mathrm{~s}^{-1}$	A1 ft	1.1b
(7 marks)			
Notes $1^{\text {st }}$ M1 for solving the problem by obtaining two actual speeds and use of $a=(v-u) / t$ $2^{\text {nd }}$ M1 use of speed at half-time $=$ av speed over interval to produce a speed at $t=1$ $1^{\text {st }} \mathrm{A} 1$ for a correct speed $3^{\text {rd }}$ M1 use of speed at half-time $=$ av speed over interval to produce a speed at $t=4$ $2^{\text {nd }}$ A1 for a correct speed $3^{\text {rd }} \mathrm{A} 1$ for correct accln $5 \mathrm{~m} \mathrm{~s}^{-2}$ $4^{\text {th }} \mathrm{A} 1 \mathrm{ft}$ for correct speed $6 \mathrm{~m} \mathrm{~s}^{-1}$ (This is an ft mark, following an incorrect value of a) N.B. Do not award the ft mark for absurd answers e.g. $a>15, u>50$			

Question	Scheme	Marks	AOs
8(a)	Substitution of both $t=0$ and $t=10$	M1	2.1
	$s=0$ for both $t=0$ and $t=10$	A1	1.1b
	Explanation ($s>0$ for $0<t<10)$ since $s=\frac{1}{10} t^{2}(t \quad 10)^{2}$	A1	2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v=\frac{1}{10}\left(4 t^{3} 60 t^{2}+200 t\right)$	A1	1.1b
	Interpretation of 'rest' to give $v=\frac{1}{10}\left(4 t^{3} \quad 60 t^{2}+200 t\right)=\frac{2}{5} t(t \quad 5)(t \quad 10)=0$	M1	1.1b
	$t=0,5,10$	A1	1.1b
	Select $t=5$ and substitute their $t=5$ into s	M1	1.1a
	Distance $=62.5 \mathrm{~m}$	A1 ft	1.1b
		(6)	
(9 marks)			
Notes (a) M1 for substituting $t=0$ and $t=10$ into s expression A1 for noting that $s=0$ at both times A1 Since s is a perfect square, $s>0$ for all other t-values. (b) $1^{\text {st }} \mathrm{M} 1$ for differentiating s w.r.t. t to give v (powers of t reducing by 1) $1^{\text {st }} \mathrm{A} 1$ for a correct v expression in any form $2^{\text {nd }}$ M1 for equating v to 0 and factorising $2^{\text {nd }} \mathrm{A} 1$ for correct t values $3^{\text {rd }} \mathrm{M} 1$ for substituting their intermediate t value into s $3^{\text {rd }} \mathrm{A} 1 \mathbf{f t}$ following an incorrect t-value.			
(a) M1 for substituting $t=0$ and $t=10$ into s expression A1 for noting that $s=0$ at both times A1 Since s is a perfect square, $s>0$ for all other t - values. (b) $1^{\text {st }} \mathrm{M} 1$ for differentiating s w.r.t. t to give v (powers of t reducing by 1) $1^{\text {st }} \mathrm{A} 1$ for a correct v expression in any form $2^{\text {nd }} \mathrm{M} 1$ for equating v to 0 and factorising $2^{\text {nd }} \mathrm{A} 1$ for correct t values $3^{\text {rd }} \mathrm{M} 1$ for substituting their intermediate t value into s $3^{\text {rd }} \mathrm{A} 1 \mathbf{f t}$ following an incorrect t-value.			

Question	Scheme	Marks	AOs
9(a) (i)	Equation of motion for A	M1	3.3
	$T-12.7=2.5 a$	A1	1.1b
	Equation of motion for B	M1	3.3
(ii)	$1.5 g-T=1.5 a$	A1	1.1b
		(4)	
(b)	Solving two equations for a	M1	1.1 b
	$a=0.5$	A1	1.1 b
		(2)	
(c)	$1=\frac{1}{2} \quad 0.5 t^{2}$	M1	3.4
	$t=2$ seconds	A1ft	1.1b
		(2)	
(d)	(i) Not very appropriate for valid reason, see below in notes	B1	3.5a
	(ii) Valid improvement in model, see below in notes.	B1	3.5c
		(2)	
(10 marks)			
Notes (a) (i) $1^{\text {st }} \mathrm{M} 1$ for resolving horizontally for A $1^{\text {st }} \mathrm{A} 1$ for a correct equation (ii) $2^{\text {nd }} \mathrm{M} 1$ for resolving vertically for B $2^{\text {nd }} \mathrm{A} 1$ for a correct equation (b) M1 for complete correct strategy for solving the problem, setting up two equations in a, and then solving them for a A1 for $a=0.5$ (c) M1 for a complete method (which could involve use of more than one suvat formula) to give an equation in t only A1ft from their a to get time in seconds (d) (i) B1 for model is inappropriate, with valid reason e.g. the ball has taken longer to reach the floor because the model - does not include air resistance - does not include the roughness of the pulley or any other appropriate comment (ii) B1 for e.g. Do not model ball B as a particle but give its dimensions so distance it falls changes e.g. Do not model pulley as being small so string not parallel to table e.g. Do not model resistance as being constant			

